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G. S. Romanov and A. S. Smetannikov UDC 533.6.01 

The study presents a procedure for numerical modeling and results of gasdynamic calculations of asteroid 

impact on the surface in a two-dimensional axisymmetric formulation for impact velocities of - 5 0  km/  sec 

and asteroid dimensions of - 1 km. The effect of gravity and radiation energy transfer are taken into account. 

Radiation transfer is calculated using the equations of radiation diffusion in the multigroup approximation 

with respect to the photon energy (10 spectral groups). The equations of radiation diffusion are solved by 

the method of alternating directions. 

The dynamics of the processes occurring in a high-velocity asteroid impact on the surface of the planets is 

now under active study. These investigations are of interest for many problems of astrophysics and space physics, 

including the consequences of possible fall of large space objects on the earth. Experimental data on high-velocity 

impact belong to the region of velocities not higher than 20 km/sec. The region of impact velocities of the order of 

100 km/sec is practically inaccessible to experimental study. In this connection, theoretical study of the dynamics 

of impact gains particular importance. Study [ 1 ] carried out two-dimensional numerical modeling of the dynamics 

of the flow arising from asteroid impact on the ground with a velocity normal to the surface. These calculations 

were made for a homogeneous atmosphere and ground. The current work is an elaboration of [1 ] and accounts for 

gravity (and, hence, for atmosphere and ground inhomogeneity) and the effect of radiation energy transfer on the 

flow dynamics and parameters. 

The flow arising from high-velocity asteroid impact on the ground is described using gasdynamic equations 

for the axisymmetric case in r - z  coordinates: 

p + V ~ r + U  = -  o--~+g, p + v ~ + u  = -  0-7' 
(1) 

P dt = -  Or + ~ z  ' P-dr = - p  Or + +q"  

This system is closed by the equations of state P = P(e, p) and T = T(e, p). For a finite-difference approximation 

of system (1) we employ a two-dimensional partially three-layer (with respect to velocity) fully conservative 

difference scheme in Eulerian cylindrical variables (r, z). The calculation of a time step is broken up into two stages, 

as is generally the case with the Eulerian procedure. In the first stage, momentum and energy equations whose 

right-hand sides retain only terms associated with the pressure and gravity and that, in fact, coincide with the 

equations of the Lagrangian procedure are solved. In the second stage, account is taken of terms associated with 

convective transfer of the pertinent quantity in the mass, energy, and momentum equations. In the same stage, 

final conversion is made from the parameters on the given and previous time layers to the parameters on the new 

time layer. To close system (1) it is necessary to specify equations of state for the media, i.e., to specify the pressure 

and temperature as functions of the energy and density. In the calculations we used an equation of state of the 

Mie-Griineisen type in the form proposed by Tillotson [21. Gabbroid anorthosite was taken as the meteorite and 
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ground material .  The  difference scheme, the solution procedure, the equations of state, and the construction of the 

calculation grid are  described in detail in [1 ]. 

In the calculations of asteroid impact on the ground, the asteroid (striker) was modeled by a cylinder of 

diameter D a nd  length H that collides with the ground with a velocity u0 normal to the surface. The g a s - g r o u n d  

contact bounda ry  lies at z = 0, with positive z corresponding to the gas and negative to the ground. At the initial 

instant of t ime, the meteorite comes in contact with the ground. In the calculation, at each given instant of time we 

determine the mass Mev of cells where the specific energy is higher  than the evaporation energy and the mass M m 

of cells where  the specific energy is higher than the melting energy. 

We previously considered impact of asteroids with characteristic dimensions of the order of 1 km and 

velocities of - 5 0  km/sec  with the ground [ 1 ]. The physical picture of the phenomenon is the following. At the site 

of impact, the pressure rises rapidly and attains a maximum. Two shock waves (SW) appear - one goes into the 

ground and the  o ther  propagates along the asteroid (striker) body opposite to its motion. The  latter wave quickly 

raises the specific energy of the striker material and evaporates it. Subsequently, this wave passes to the atmosphere 

and ascends,  gradual ly  expanding radially. Behind the asteroid body moving into the ground, a rarefied region is 

formed, into which the surrounding medium flows. Subsequently,  accumulation of this flow on the symmetry axis 

occurs, and as a consequence, the density of internal energy (and the temperature) in this region rises significantly. 

Thus, a hot region is formed behind the front of the shock wave moving into the gas. The  shock wave moving into 

the ground raises the parameters in the surrounding medium and evaporates the ground (as long as its intensity 

is sufficient for  this). This shock wave is followed by the asteroid, which slows down and gradually deforms. The  

penetration of the asteroid into the ground gives rise to a crater,  and the asteroid material  spreads over its surface. 

By this instant  of time, the meteorite body has turned inside out - the outer surface of the striker (making contact 

with the gas at the initial instant of time) becomes the inner, and the inner surface (making contact with the ground 

at the initial instant  of time) becomes the outer. An upward jet appears around the edge of the crater formed. The  

jet consists of material  of both the asteroid and the ground involved in this movement. As a result of the deceleration 

of the asteroid,  a significant portion of the kinetic energy converts into internal energy,  and a second region with 

a high t empera tu re  and energy is formed inside the crater. Subsequently, the shock wave in the gas rises and 

expands radially.  The  lower boundary  of the asteroid reaches a maximum depth and stops. The material near the 

upper boundary  of the asteroid in the crater starts moving toward the gas. R a y l e i g h - T a y l o r  instability is likely to 

develop here,  since denser  material accelerates toward less dense. The crater grows gradually. The shock wave in 

the ground reached  a significant depth and acquired a hemispherical shape, and its parameters  decrease with time. 

The subsequent  development of the flow leads to enlargement of the region covered by the flow and to a gradual 

decrease in the  maximum parameters.  

To take  account  of the effect of gravity, the accelerat ion due to gravity g is added  to the r ight -hand 

side of the equa t ion  of motion. In the gas use is made of the model of an isothermal  exponential  a tmosphere  

P = P0 exp ( - z / L )  with a characateristic height L = 7.9 km 99o = 1.29.10 -3 g/cm 3 is the density of air at z = 0). 

In the ground,  the pressure is constructed such that its gradient counterbalances the weight of the overlying layers. 

Here, we employ the difference approximation of the balance equations d P / d z  = p g  with account for the equations 

of state and adiabatic compression of the ground de  = - P d ( 1 / p ) .  

We now consider results calculated for impact of an asteroid wi th  D = H = t km with the ground with a 

velocity u0 = 50 km/sec  with allowance for gravity (the first version). The initial phase of the impact (penetration 

of the asteroid body into the ground, its deceleration and stoppage) practically does not differ from the calculation 

with a homogeneous  atmosphere and ground, in view of which we will not describe it in detail. Figure la plots 

density, energy,  pressure, temperature,  and velocity fields for the time t = 0.3 sec. On the density field it is clearly 

seen that the c ra te r  depth at this instant of time is 4 km and the crater radius is slightly larger than 2 kin. The  

shock wave in the ground reached a depth of 4.7 km, its radial dimension is 4 kin, and the maximum pressure is 

equal to 400 kbar.  In the hot region inside the crater,  the specific energy has a maximum of 118 kJ/g, and the 

maximum tempera ture  is 12.3 eV. The  shock wave in the gas rose to a height of 6 km and reached 3 km in radius. 

The energy and  temperature maxima in it are significant, 123 kJ /g  and 12.7 eV. The  maximum radial and axial 

velocities are as follows: u = - 4  km/sec  and v = 2.1 km/sec  in the ground shock wave, and u = 34 km/sec and v 
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Fig. 1. Density, energy, pressure, temperature,  and velocity fields for the first 

version of the calculation at the instant  t -- 0.3 sec (a), 1 sec (b), and 1.8 sec 

(c). z, km; r, km; p, kg/dm3; e, MJ/kg;  P, GPa; T, eV; u and v, km/sec. 

-- 5 km/sec  in the shock wave in the gas region. By the instant of time of 1 sec (the fields of the quantities are 

presented in Fig. lb) ,  the shock wave in the ground passed to a depth of 9 km, its radial dimension is more than 

8 km, and the pressure maximum is equal to 90 kbar. The shock wave in the gas rose to a height of 20 km and 

reached 7 km in radius. Here,  the maximum temperatures  in the crater and gas regions are equal to about  4 eV. 

T he  crater  depth is 6 km and the crater radius is 3.4 kin. On the pressure and energy fields it is clearly seen that 

the position of the front  of the shock wave in the gas on the symmetry axis (18 km) lags somewhat behind the 

position of the shock wave at a radius of 1.5 km (20 km). This is a consequence of the formation of a jet spouting 

upward around the crater  edge at an earlier stage. 

At the instant of 1.8 sec, the shock wave in the gas ascends to a height of 3.5 km and attains a radius of 

11 km (Fig. lc). The  maximum pressure in it is 40 bar,  the maximum temperature is 2.5 eV, and the maximum 

axial and radial velocities are  17 and 3.6 km/sec.  Velocity components in the ground region are noticeably lower, 

being 1.8 and 1 km/sec.  The  crater depth increased to 6.7 km, and the crater  radius, to 4.8 km. The  shock wave 

in the ground reached a depth of 14 km and its radius is practically as much. Subsequently, the flow develops, the 

region covered by the flow expands, and the maximum parameters decrease gradually. By 4 sec, the SW in the gas 

has moved to a height of 80 km (70 km on the symmet ry  axis) and attained 20 km in radius. The  hot region has 

risen from the crater  to a height of 10 km, and the maximum temperature in it is already not high, 0.6 eV. In the 

upper  hot region (at a height of 60 km), the temperature  is noticeably higher, 2.1 eV, the maximum of the axial 

velocity is 13 km/sec ,  and that  of the radial, 4 km/sec .  The shock wave in the ground has passed 25 km and is of 

hemispherical shape. The  crater  depth is 7.5 km and the crater radius is 7 km. 

Figure 2 shows the time variation of the integral flow characteristics for this version of the calculation. On 

the whole, their behavior is close to the calculation with a homogeneous atmosphere and ground. On penetrating 
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Fig. 2. Time behavior of integral characteristics for the first version of the 

calculation: internal (in) and kinetic (k) energies; masses evaporated (ev), 

melted (m), and raised above z = 0 (r); radial and axial momenta;  energy 

portion in melted (m) and evaporated (ev) materials, t, sec; E, 1020 J; I, 1020 

g- cm/sec.  

into the ground,  the striker decelerates and its kinetic energy rapidly converts into internal  energy, which attains 

a maximum of 0.7 of the initial kinetic energy E 0 (0.16 sec). Subsequently, the internal  energy falls slowly and the 

kinetic rises. They  become equal at 1.9 sec, i.e., a little later than in the calculation without account for gravity. 

The evaporated mass reaches a maximum of 23.2 M0 (0.15 sec), and the melted mass, 130 M0 (0.3 sec). The  

ground mass lifted into the air above the line z = 0 increases in time and is about 400 MO by 3 sec. In addition, 

we calculated the material mass that  can be expelled into space (i.e., that has a modulus of velocity greater than 

the second space velocity of 11.2 km/sec  and a positive component of the axial velocity). This quantity increases 

slowly in time and is 0.21 M 0 by 4 sec. 

As the calculations for a high-velocity impact reveal, high temperatures and large temperature gradients 

appear  in the flow field, in which connection the energy redistribution over mass effected by radiation can play an 

important  role in the problem. This makes it necessary to calculate radiation transfer  over the flow field, and the 

energy equation should be supplemented with a term that accounts for the energy redistr ibution due to this process. 

Radiation t ransfer  is calculated using the equations of radiation diffusion in the multigroup approximation 13, 4 ] 

with respect to the photon energy: 

div S = ctc l (B l - UI) ; _t = 3x l grad UI; U = ~ UI; ~ =  ~ S l.  (2) 
l l 

The  equilibrium radiation energy density B l in the l-th spectral group (with boundaries with respect to the photon 

energy of e l_ 1 and e l) is determined as follows: 

x2 3dz el- 1 Cl (3) 
cB l =  4aT4sl s 1= f z-L---- x 1 - x 2 -  . 

x 1 e - 1 kT kT  

In cylindrical geometry in r - z  coordinates under the condition of axial symmetry,  the system of equations (2) has 

the form (to simplify the writing, the index of the spectral group is omitted below) 
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1 0 (rS A 
r Or 

OS z 
- -  + = C,C ( B - U )  , = 

c OU c OU 

3~c O r '  Sz - 3 x  Oz"  
(4) 

Passage from these expressions to an equation of the second order yields 

1 0 ( c r  OU I 0 ( c O i l  I 
r Or I-~x--~r) + ~z  13to Oz ) + ctc (B  - L 0 = O. (5) 

The two-dimensional diffusion equation is solved numerically using various methods, namely, a - f l  

iterations [4 ], alternating directions [5 ], conjugate gradients with the incomplete expansion of Kholetskii [6 ], etc. 

We apply the method of alternating directions, which is based on the principle of transition to a steady state. The 

solution of the stationary equation V ( - ~ V U )  = f is the limit as t --, oo of the solution of the equation OU _ 
ot 

V( VU). - f in the fictitious time t. Its solution is found using an iteration method, with a single iteration (passage 
from U j to U y+l) consisting of two time half-steps: 

1) from the known U j, the intermediate function U is found from the equation 

- r Or ~3x Or) + - ~ z  -~--~-z - f ;  

in the difference form, this equation is three-point in the coordinate r, and its solution ~r is found using factorization 
along the radius. 

2) from the known U, the function U j+l  is determined from the equation 

lo co 1 otco +l 1 
~r - r Or I -~x-~r  ) + -~z 3x  Oz - f " 

In the difference form, this equation is three-point in the coordinate z and is solved by factorization along the axial 

coordinate. Conducting these iterations, we "advance" in fictitious time t until the solution reaches a steady state, 

which will be the solution of Eq. (5). In solving the equations on iteration half-steps, appropriate boundary 

conditions should, of course, be specified. The method of alternating directions is unconditionally stable (see, for 

example, [7 ]). At the same time, it is impossible to carry out the calculation with arbitrarily large time steps, since 

here asymptotic stability is lost. There is the possibility of selecting an optimum time step where the solution is 

obtained in a minimum number of steps and asymptotic stability is retained [7 ]. However, for this the difference 

operator spectrum (the set of eigenvalues) must be known, which is no less complicated a problem than solution of 

the initial equation. Therefore, selection of a time step should involve various heuristic considerations (stability for 
model problems, dimensional relations, etc.) and numerical experiments. 

To solve Eq. (4) numerically, we approximate it by means of finite differences on a rectangular grid in 
r - z  coordinates, having passed to the nonstationary equation 

1 OUt, n 
c Ot - D U i , n - I  + K U i - I ,  n + EUi+I ,  n + VUi, n+l - (C + C')  Ui, n + F ,  (6) 

D = 
1 1 

(zi,n+ I - zi,n) 2 [tanh 3tci, n (Zi,n+ 1 - Z i ,n ) /4  + tanh 3tOt,n_ I (zi, n - Zi, n _ l ) / 4  1 ' 

K = ri'n 1 

(ri2+ l,n r 2 ) -- _ -- i,n [ tanh  3xi,n (r i+l ,n r i , n ) /4  + tanh3xi,n-1 (ri,n r i , n - 1 ) / 4  ] 

V =  
1 1 

(Zi,n+ 1 -- Zi,n) 2 [tanh ]Xi,n+ 1 (Zi,n+ 2 - Z i , n + l ) / 4  + tanh 31r n (Zi,n+ 1 - Z i , n ) / 4  ] ' 
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E = ri+ 1 ,n 1 
2 r 2 

( r i+ l , n  --  i,n) [tanh 3Xi+l,  n (ri+2, n - r i + l , n ) / 4  + tanh 3tci, n (ri+l,  n - r i , n ) / 4  ] 

C = E +  K + t C i , n / 2 ;  C'  = V +  D + t C i , n / 2 ;  F =  ( tcB)i ,n ,  

the quantity Ui, n refers to the cell center. In accordance with the method of alternating directions, a single iteration 

for solving Eq. (6) consists of two half-steps: 

( ~ J -  LOi'n - DU~ + KLI i_ I ,  n + - + VU~n+I  - C~Jin  - C ' ~ n  + F (7) cT , n -  1 E U i  + 1 ,n , , , ' 

( d + l  - U) i ,n  +1 -- "+1 ' "+1 (8) 
- C U~i n + = OU~i,n-1 + K U i - 1  n + E U i + l , n  + VU~i,n+l - C~Ji n F .  

C ~  * ~ 

We use the following as the boundary  conditions. On the axis of symmetry (r -- 0) we set Sr  = 0. At the maximum 

radius of the calculation region,  Sr  = c U / 2 .  At the minimum axial coordinate of the calculation region, Sz  = 

- c U / 2 ,  and at the maximum,  S z  -- c U / 2 .  Expression (6) was obtained using the approximation for optically thick 

cells where the optical thickness 3 [(xA)i + (teA) i_ 1 ] / 2  in the difference representation of the flows (4) is replaced 

by 2 [tanh 3(rAi) /4  + tanh  3 (xA) i_1 /4 ]  (see [41, Ch. III, para. 5, point 3). The difference expressions for the 

radiation flows turn out to be the following: 

r U i - l , n -  Ui,n 

S i ' n  = 2 [tanh 3tci, n (r i+l ,  n - r i , n ) / 4  + tanh 3Xi_ l ,  n ( r im - r i _ I , n ) / 4 1  ' 

z U l , n - 1  -- Ui, n 

S i ,n  = 2 [tanh 3xi, n (Zi,n+ 1 - Z i , n ) / 4  + tanh 3Ki,n_ 1 (zi, n - z i , n _ l ) / 4 1 "  

The  flows refer to the centers  of the pertinent cell sides. 

To solve Eq. (7) by  means  of factorization, we introduce the factorization coefficients a r and f ir  and the 
r r coupling Ui,n = c t i + l U i + l , n  4 - f l i+ l "  Using the boundary conditions on the symmetry axis r = 0 (i = 2) and at the 

maximum radius r = rmax (i = / 3 ,  we obtain the following scheme for solving Eq. (7): 

r r r 

a 2 = i ; f12 = 0 ;  ai+ 1 = 
C + I / o r - K a y '  C +  I / c T -  Ka~ 

i = 2  . . . . .  I - 1 ;  

F =  F +  DUb, n_  I + VU{,n+ 1 + ( 1 / c r  - C ' )  U~,n ; 

r 

fll t + a  
l ,n = " ~02,n = - - '  r ~ 

~o2, n -- a I 1 -- a 

a = [ tanh 31r n ( r i+l ,  n - r l , n ) / 4  + tanh 3x i_1 ,  n ( r l m  - r 1 _ l , n ) / 4 1 / 2 ;  

r F 

~Ji- l ,n  = a i  ~Ji,n + fli ; i = I, ..., 2 .  

Likewise, the scheme for solving Eq. (8) looks as follows: 
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Fig. 3. Dens i ty ,  energy ,  pressure,  temperature ,  and  velocity fields (a) and 

fields of the  r ad ia t ion  energy dens i ty  and  the radial and axial  componen t s  of 

the radiat ion flow (b) for the second version of the calculation at the instant 

t = 1 sec.  

z z l - b  
a N M I  = 5~ ; f lNMI = 0 ; 503,i = 1 + b ' 

b = [ t a n h  3Ki,NM I (Zi,NMI+ 1 -- Z i , N M l ) / 4  + tanh 3/r l (Zi,NM I -- Z i , N M l _ l ) / 4 ] / 2 ;  

a n + l  = , - ;  f l n + l  = , - ; 
C + 1 / c r -  Da ~  C + 1 / 6 7 -  Da~ 

n =  NMI . . . . .  N M A -  1;  
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F '  = F + K~Ji_l, n + E~Ji+l, n + ( 1 / c r  - C) ~]i,n ; 

Z 

"+l flNMA I + d 
/~/,NMA ----" ; ~4 , i  = - - ;  z 

~O4, i - -  a N M  A 1 - d 

d = [ t a n h  3gi ,NM A (Zi, NMA+ 1 --  Zi,NMA)/4 + t a n h  3Ki,NM A_ 1 (Zi,NMA -- Z i , N M A - 0 / 4  ] / 2  ; 

U]'+I z U].'+ 1 f lz .  
i,n-1 = an i,n + n,  n = NMA . . . . .  N M I .  

After these computat ions the calculation of an iteration cycle is completed. Having conducted iterations 

until a steady state is reached,  we obtain the solution of the equation of radiation diffusion. The  condition for 

terminating the iterations is specified in the form I (U j+l - UJ)/UJ+ll _< c5, where 6 is a constant defining the 

accuracy of convergence of the iterations. The energy redistribution over mass effected by radiation is described 

by the source in the r igh t -hand  side of the energy equation in system (1), which is determined by the divergence 

of the radiation flow, q -- - d i v  S. 

As an example of the calculation in the approximation of radiation gasdynamics, let us consider  impact of 

an asteroid with dimensions D = H --- l km and an initial velocity u 0 = - 5 0  km/sec (the second version). Here 

gravity is taken into account.  The  equations of radiation diffusion were solved using Planck absorption coefficients 

a v e r a g e d  o v e r  t h e  p h o t o n  e n e r g y  in 10 s p e c t r a l  g r o u p s  w i t h  the  f o l l o w i n g  b o u n d a r i e s :  

0 .015-0.511 - 1 . 4 1 - 2 . 7 1 - 4 . 5 1 - 6 . 5 2 - 7 . 9 5 - 9 . 9 6 - 1 8 . 6 - 8 0 . 5 - 2 4 8  eV. The  absorption coefficients were calculated 

with allowance for b remss t rah lung ,  photo-, and line processes. The procedure  for computing the absorption 

coefficients and the details of the quantum-mechanical calculations are presented in [8, 9 ]. 

The character  of the flow and the fields of physical quantities at an early stage (up to about 5 sec) differ 

only slightly from the calculation disregarding radiation. In this connection, this stage of the flow will not be 

described. Figure 3 plots the densi ty,  energy, pressure, temperature, and velocity fields for t = l sec (Fig. 3a) and 

the fields of the radiation ene rgy  density and the radial and axial components of the radiation flow integrated over 

the spectrum (Fig. 3b). On the whole, the fields of hydrodynamic quantities are close to those obtained at this 

instant of time disregarding radiat ion energy transfer  (see Fig. lb).  However, some differences that consist in the 

following are a l ready seen. T h e r e  is no lag in the SW propagating over the gas near the symmetry axis. Whereas 

previously the SW front on the symmetry axis was at a height of 17.5 km and rose to 20 km at a radius of 1.5 km, 

now it is located at a height of 20 km for radii ranging between 0 and 3 kin. A heated region already begins to 

form before the front of the SW in the gas in the direction of the drop in the atmospheric density. This is especially 

clear in the diagram of the temperature  field, where the SW front for heights between 12 and 20 km and radii 

between 2 and 5 km has widened  noticeably and a heating "tongue" is formed. The temperature maximum in the 

SW propagating over the gas has  diminished slightly and is now located on the symmetry axis, whereas previously 

it lay somewhat aside (at r = 1 kin). 

A similar res t ructur ing of the temperature field has also occurred in the second hot region, i.e., near  the 

crater. Here also, in the calculation disregarding radiation there was a temperature maximum at a certain distance 

from the symmetry axis (r = 1 kin). With radiation taken into account, the temperature maximum has shifted to 

the symmetry axis. It should be noted that, inside the flow region with a temperature above 0 . 5 - 1  eV, the mean 

free paths of quanta (in all spectral  groups) turn out to be markedly smaller than the dimensions of this region. 

And only near its boundaries  does the reverse take place. As a consequence, although the radiation flows in it are 

large, they merely redis t r ibute  the energy internally. Radiation is carried off by noticeably smaller flows at the 

boundary of this region, where  the temperature is lower and the mean free paths of quanta are comparable to or 

larger than the thickness of this "boundary" zone. At the instant of time t = 1 sec, the maximum radial and axial 

radiation flows (in absolute value) are 0.5 and 2.8 MW/cm 3, respectively. At the same time, the magnitude of the 

flows effecting heating is appreciably lower, of the order  of several tenths of a kW/cm 2. Subsequently,  the flow 

develops and the region it covers enlarges noticeably. The heating region ahead of the front of the SW in the gas 
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Fig. 4. Densi ty ,  energy,  pressure,  temperature ,  and velocity fields (a) and 

fields of the  radiat ion energy density and the radial and axial components  of 

the radiat ion flow (b) for the second version of the calculation at the instant 

t = 1.8 sec. 

also grows. The fields of gasdynamic  quantities at the instant of time t = 1.8 sec a re  shown in Fig. 4a. Figure 4b 

presents  the flows and the radia t ion  energy density for this instant of time. The  shock wave in the gas has  risen 

to 3.5 km, and its radial d imens ion  is 12 km. In the calculation with radiation, the temperature m a x i m u m  in the 

gas has decreased to 1.9 eV (in the gasdynamic calculation it was 2.3 eV). Due to radiation, a wide heat ing zone 

with a thickness of about 5 km and  a temperature of the order  of 0.3 eV has fo rmed ahead of the SW front.  This 

is readily traced in a compar ison with the temperature and pressure fields (see Fig. 3) at the same instant  of t ime 

in the calculation without radia t ion transfer. This heating gives rise to a wave in the pressure field running  ahead 
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of the SW front in the region of exponential decrease of the atmosphere. At the same time, should the atmosphere 

be homogeneous (with a normal density), the heating region ahead of the front of the shock wave in the gas would 

be very narrow and practically unnoticeable on the overall background of a decrease in the parameters ahead of 

its front, i.e., allowance for gravity causing the gas density to decrease with height is also important. This heating 

wave does not practically affect the density field. The maximum temperature in the "near-crater" hot region 

increases somewhat, by about 0.2 eV. At t = 1.8 sec, the maximum radiation flows have a value of 400-600 kW/cm2; 

however, heating (energy removal from the hot region) is effected by flows that are about an order of magnitude 

smaller. The time behavior of integral characteristics has remained practically the same as in the calculation without 

radiation transfer. The energy removed from the flow region by radiation accounts for a small portion ( -  10 -4) of 

the initial kinetic energy of the asteroid. 

The following is noted in conclusion. A computational program for two-dimensional gasdynamic problems 

based on fully conservative difference schemes in Eulerian coordinates with consistent approximation of the flows 

is worked out. Asteroid impact is modeled with allowance for gravity (the atmosphere is isothermal exponential, 

and the pressure gradient in the ground counterbalances the weight of overlying layers). In this case, the 

calculations are carried out both in the gasdynamic approximation and with account for radiation energy transfer. 

The effect of gravity on the time behavior of integral characteristics of the impact proves to be insignificant. 

Radiation transfer gives rise to a wide heating region with a temperature of the order of 0.3 eV ahead of the front 

of the shock wave in the gas (on the side of the exponential decrease of the atmosphere). Radiation energy transfer 

alters somewhat the parameters inside the region covered by the flow and the shape of the front of the shock wave 

moving over the gas. 

The work was carried out under the program of the International Science and Technology Center, project 

B23-96. 

N O T A T I O N  

r, z, coordinates; t, time; v, u, radial and axial velocities; p, density; P, pressure; e, energy of unit mass; 

T, temperature; U, radiation energy density; S, Sr, Sz, radiation energy flow and its radial and axial components; 

or, Stefan-Boltzmann constant; k, Boltzmann constant; to, absorption coefficient; c, speed of light. Subscripts: i, 

number of a point on the radius; n, number of a point on the axis; j, number of a time layer; ev, evaporated; m, 

melted; NMI, NMA, minimum and maximum indices of the calculation region along the coordinate z; 2 and I, 

minimum and maximum indices of the calculation region along the coordinate r; l, number of a spectral group. 
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